Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Immunol ; 13: 1032574, 2022.
Article in English | MEDLINE | ID: covidwho-2119713

ABSTRACT

Despite the initially reported high efficacy of vaccines directed against ancestral SARS-CoV-2, repeated infections in both unvaccinated and vaccinated populations remain a major global health challenge. Because of mutation-mediated immune escape by variants-of-concern (VOC), approved neutralizing antibodies (neutAbs) effective against the original strains have been rendered non-protective. Identification and characterization of mutation-independent pan-neutralizing antibody responses are therefore essential for controlling the pandemic. Here, we characterize and discuss the origins of SARS-CoV-2 neutAbs, arising from either natural infection or following vaccination. In our study, neutAbs in COVID-19 patients were detected using the combination of two lateral flow immunoassay (LFIA) tests, corroborated by plaque reduction neutralization testing (PRNT). A point-of-care neutAb LFIA, NeutraXpress™, was validated using serum samples from historical pre-COVID-19 negative controls, patients infected with other respiratory pathogens, and PCR-confirmed COVID-19 patients. Surprisingly, potent neutAb activity was mainly noted in patients generating both IgM and IgG against the Spike receptor-binding domain (RBD), in contrast to samples possessing anti-RBD IgG alone. We propose that low-affinity, high-avidity, germline-encoded natural IgM and subsequent generation of class-switched IgG may have an underappreciated role in cross-protection, potentially offsetting immune escape by SARS-CoV-2 variants. We suggest Reverse Vaccinology 3.0 to further exploit this innate-like defense mechanism. Our proposition has potential implications for immunogen design, and provides strategies to elicit pan-neutAbs from natural B1-like cells. Refinements in future immunization protocols might further boost long-term cross-protection, even at the mucosal level, against clinical manifestations of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Spike Glycoprotein, Coronavirus , Neutralization Tests , Antibodies, Neutralizing , Immunoglobulin G , Germ Cells , Immunoglobulin M
2.
Antib Ther ; 5(1): 55-62, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1684498

ABSTRACT

Although mRNA vaccines against SARS-CoV-2 were highly efficacious against severe illness and hospitalization, they seem to be less effective in preventing infection months after vaccination, especially with the Delta variant. Breakthrough infections might be due to higher infectivity of the variants, relaxed protective measures by the general public in "COVID-19 fatigue", and/or waning immunity post-vaccination. Determining the neutralizing antibody levels in a longitudinal manner may address this issue, but technical complexity of classic assays precludes easy detection and quick answers. We developed a lateral flow immunoassay NeutraXpress™ (commercial name of the test kit by Antagen Diagnostics, Inc.) and tested fingertip blood samples of subjects receiving either Moderna or Pfizer vaccines at various time points. With this device, we confirmed the reported clinical findings that mRNA vaccine-induced neutralizing antibodies quickly wane after 3-6 months. Thus, using rapid tests to monitor neutralizing antibody status could help identify individuals at risk, prevent breakthrough infections, and guide social behavior to curtail the spread of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL